
Networking Quick Start Guide

Part I - Creating a Lobby
This document is an easy start guide to unity networking API. I’ll show how to
create a simple game that will contain a lobby, players will be able to create
and join matches. The idea is to cover the basics of the networking lobby,
such as, how to create a match (using the matchmaking system), join a
match, list results on the interface and more..

Results

The result of this tutorial is a lobby scene that allow players to create or join a match. Once two
players have been connected to the same match, the lobby automatically transfer both to a play
scene. The networked game should run on the play scene.

The created lobby

Index
Networking Quick Start Guide 0

Part I - Creating a Lobby 0
Results 0
Index 1
Getting the project ready 2
Project’s Network Scheme 3
UI Manager 6

Initial version of the UIManager 6
Representing a Match 7
Initializing the Lobby Manager 7
Creating a match 8
Joining a match 10
Refreshing the list of matches 11

The Lobby Manager 13
Initial version of the LobbyManager 13
OnMatchCreate 15
OnMatchList 16

Setting up the Lobby Manager (Inspector) 16
Player and LobbyPlayer 16
Play Scene and Lobby Scene 17

Appendix - The code 19
UI Manager 19
Lobby Manager 24
Lobby Player 27
Player 27

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 1

Getting the project ready

This tutorial is made using Unity3D. You will need a fresh Unity Project, I’m using for this
example Unity 2017.1.0f3.

In order to use UNET, you will need a Unity account (a free account works) and an organization,
you get one by default but you can also create one yourself
(https://support.unity3d.com/hc/en-us/articles/210141563-What-is-an-Organization-).

On your unity project, go to the Services tab (top menu bar, Window-> Services or simply
CTRL+0). Scroll down until you see Multiplayer, click on it and then click on ‘Go to EULA’. You
must accept it in order to be able to use Unity’s networking services.

Multiplayer Services Screen

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 2

https://support.unity3d.com/hc/en-us/articles/210141563-What-is-an-Organization-

Project’s Network Scheme

There are several ways that you can create a network setup, each have its advantages and
disadvantages. For the sake of this tutorial I will be working with the following setup.

The network scheme

This setup is pretty simple and works great on 1v1 games, like Chess or Hearthstone. It
wouldn’t work so great for Counter-Strike or Battlefield. On this arrangement we must remember
that the Player 1 has latency 0, it will always be in a certain advantage if you game relies on
timely response from players. Another thing to consider is that whenever the Player 1 decides to
quit the match Player 2 is automatically disconnected.

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 3

Setting the lobby UI

Let’s start by creating the a very simple UI. Like the one below, you need two buttons and a
panel to list the matches. The picture shows how it’s made on my project.

Hiearchy and Lobby

It’s needed an UI to represent the match other players will see on the panel. This should be a
button so players can click to join. I’ll call it ‘Room’ like in the image below. Once it’s done create
a folder called “Prefabs” on your hierarchy and drag it there making it a prefab, we will use it in
the future.

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 4

Room container hiearchy

Under the MatchesPanel I created a ‘Container’ object with a ‘VerticalLayoutGroup’ component
on it. So when Rooms are spawned they are properly organized in a list. If you are having
trouble creating this UI, refer to the project available at (link).

In order to keep the scene organized, create a game object called ‘Managers’. This will hold the
managers we will have on this scene. Add two child game objects, ‘UI Manager’ and ‘Lobby
Manager’. Each will have its respective manager script.

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 5

UI Manager

The UI Manager script will hold the events and methods for controlling the user interface. Create
a folder named ‘Scripts’ and a new C# script called UIManager. Initialize it with the code below.

Initial version of the UIManager

public class UIManager : MonoBehaviour
{

 public static UIManager Instance;
 public GameObject RoomPrefab;
 /// <summary>
 /// Awake method transforms this class into a singleton.
 void Awake()
 {

 // Performing a Singleton.
 if (UIManager.Instance != null)
 {

 Destroy(this.gameObject);
 Destroy(this);
 return;
 }

 else
 Instance = this;
 }

 // Use this for initialization
 void Start () { }

 // Update is called once per frame
 void Update () { }

 /// <summary>
 /// Fill the list of matches on the UI.
 /// </summary>
 public void ListMatches(List<MatchInfoSnapshot> matchList){}

 /// <summary>
 /// Creates a room and waits for player.
 /// </summary>
 public void OnClickCreateRoomButton(){}

 /// <summary>
 /// When the player click to join the room.
 /// </summary>
 public void OnClickJoinRoomButton(NetworkID networkID){}

}

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 6

Representing a Match

On the UIManager we will need a class to store information about matches (I’ll call it ‘Room’).
This class will contain a name, a reference to itself and a NetworkID. The id is given by the
matchmaking system when the match is created. Add the code below to the UIManager script.

/// <summary>

/// A structure to hold information regarding a room.

/// </summary>

private class Room
{

 public string name;
 public GameObject instance;
 public NetworkID networkId;

 /// <summary>
 /// Constructor for the RoomInformation.
 /// </summary>
 /// <param name="Name"> The name of the room. </param>
 /// <param name="Instance"> The GameObject that represents the room on the list.</param>
 public Room(string Name, GameObject Instance, NetworkID id)
 {

 name = Name;
 instance = Instance;
 networkId = id;
 }

}

Each match instantiated in the UI will have a Room class representing it on the UIManager.
Therefore there will be a list of Room on the UIManager. Add on the UIManager:

private List<Room> roomsAvailable;

Initializing the Lobby Manager

In order to perform any networking operation, we must initialize the LobbyManager. Add the
following code to the Start method of the UIManager. This will start the matchmaking engine.

// Use this for initialization

void Start()
{

 // Start the matchmaking
 LobbyManager.Instance.StartMatchMaker();
}

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 7

Creating a match

The ‘Create Match’ button will allow a player to create a match. In order to create a match we
must call the following method on the lobby manager. Add this method to the UIManager. On
the Unity Inspector, hook this to the onClick event of the ‘Create Button’.

/// <summary>

/// Creates a room and waits for player.

/// </summary>

public void OnClickCreateRoomButton()
{

 /* Creates the match. */
 LobbyManager.Instance.matchMaker.CreateMatch(
 "New Room",
 (uint)LobbyManager.Instance.maxPlayers,
 true,
 "", "", "", 0, 0,
 LobbyManager.Instance.OnMatchCreate);
}

The LobbyManage’s CreateMatch method takes as argument:

1. The name of the new match.
2. The max number of players on that match.
3. If it should advertise the match for other players to see it.
4. The password if there is one.
5. The public client address (leave it blank for standart)
6. The private client address (leave it blank for standart)
7. Elo score for match (leave it 0 for standart)
8. The request domain, this should be the same throughout your application!
9. A method to execute when the match is created.

Once the match is succesfully created by the LobbyManager, it needs to be instantiate on the
UI. In order to do so, let’s add another method to the UIManager. The CreateRoomOnUI, this
will be called by on the OnMatchCreate callback we just set. It will receive a NetworkID which is
an unique identifier for the match.

Add the CreateRoomOnUI to the UIManager script:

/// <summary>

/// Creates a room on the user interface.

/// </summary>

public void CreateRoomOnUI(NetworkID networkID)
{

 GameObject parent = GameObject.Find("MatchesPanel/Container");

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 8

 /* Creates the room and set it under the container object.*/
 GameObject room = GameObject.Instantiate(RoomPrefab, parent.transform);
 roomsCreated++;
 room.GetComponentInChildren<Text>().text = "Room " + roomsCreated;
 room.GetComponent<Button>().onClick.RemoveAllListeners();
 room.GetComponent<Button>().onClick.AddListener(delegate {
ChangeSelectedRoom(networkID); });

 roomsAvailable.Add(new Room("Room " + roomsCreated, room, networkID));

}

Note that at the same time we are adding the room to the UI we are setting it’s ‘onClick’ event
with the ChangeSelectedRoom method. This method will be responsible for setting the current
selected match on the UIManager script so it knows which room to join when clicking on the
‘Join Match’ button.

/// <summary>

/// Change the selected room on the UI

/// </summary>

/// <param name="selection"></param>

public void ChangeSelectedRoom(NetworkID selection)
{

 this.roomSelected = (ulong)selection;
}

A method to remove a match from the UI will also be needed, the following code finds and
remove a match from the UI.

/// <summary>

/// Creates a room on the user interface.

/// </summary>

public void RemoveRoomOnUI(NetworkID networkID)
{

 Room elementToBeDeleted = roomsAvailable.Find(R => R.networkId == networkID);
 if (elementToBeDeleted != null)
 {

 roomsAvailable.Remove(elementToBeDeleted);
 GameObject.Destroy(elementToBeDeleted.instance.gameObject);
 }

 else
 Debug.LogError("<color=orange>UIManager:</color>Could not find the element to
destroy.");
}

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 9

Add the variables roomSelected (the networkingID of the selected match) and roomsCreated
(just a variable to help naming Rooms) to the UIManager script.

private ulong roomSelected = (ulong)NetworkID.Invalid;

private int roomsCreated = 0;

Joining a match

In order to join a match we must find the NetworkID of the selected room and call the JoinMatch
method.

/// <summary>

/// When the player click to join the room.

/// </summary>

public void OnClickJoinRoomButton()
{

 if (roomsAvailable[roomSelected] == null)
 {

 Debug.Log("<color=orange>UIManager</color> There seems to be an error the selected
room doesn't exist.");
 return;
 }

 NetworkID selected = roomsAvailable[roomSelected].networkId;

 /* Call the method that tries to login */
 Debug.Log("Attempt to join.");
 LobbyManager.Instance.matchMaker.JoinMatch(selected, "", "", "", 0, 0,
LobbyManager.Instance.OnMatchJoined);
}

The JoinMatch method takes as argument:

1. The id of the match we want to join.
2. The password if there is one.
3. The public client address (leave it blank for standart)
4. The private client address (leave it blank for standart)
5. Elo score for match (leave it 0 for standart)
6. The request domain, this should be the same throughout your application!
7. A method to execute when the match is joined.

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 10

Refreshing the list of matches

Now we want to get a list of matches from the server and display it on the UI. To get it from the
server let’s create the method.

private void RefreshMatchList()
{

 LobbyManager.Instance.matchMaker.ListMatches(
 0,
 6,
 "",
 true,
 0,
 0,

 LobbyManager.Instance.OnMatchList);
}

The ListMatches takes as arguments:

1. Start page number (we want the first page).
2. Number os rooms per page (let’s set it to 6).
3. A string to filter page names (let’s leave it empty).
4. A bool if we want to filter private matches (let’s say true).
5. Elo score for match (leave it 0 for standart)
6. The request domain, this should be the same throughout your application!
7. A callback to do something when completed.

We want the room list UI to run as soon as the scene is loaded and refresh every second so we
always know which rooms are available to join. In order to do so I’ll create a coroutine and run it
at the start of the UIManager.

private IEnumerator RefreshLobby()
{

 while (true)
 {

 RefreshMatchList();
 yield return new WaitForSeconds(1f);
 }

}

Add it to the Start function of the UIManager to guarantee that it will start running as soon as the
script starts. The Start function should look like this.

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 11

// Use this for initialization

void Start()
{

 roomsAvailable = new List<RoomInformation>();
 // Start the matchmaking
 LobbyManager.Instance.StartMatchMaker();
 StopAllCoroutines();
 StartCoroutine(RefreshLobby());
}

At this point we are able to request to the server which rooms are available online, every 1
second. However there isn’t a method to update the list match list on the user interface,
removing old rooms and adding new ones.

The method below is able to use the CreateRoomOnUI and RemoveRoomOnUI methods that
we developed and update the UI.

public void UpdateMatchList(List<MatchInfoSnapshot> matchList)
{

 /* Case there is no match. */
 if (matchList.Count == 0)
 {
 int elementIndex = 0;
 while (roomsAvailable.Count != 0)
 {
 RemoveRoomOnUI(roomsAvailable[elementIndex].networkId);
 }
 return;
 }

 /* Check every room online to see if it exist on the UI if not create it.*/
 for (int i = 0; i < matchList.Count; ++i)
 {
 /* If room exist online but not on UI create it.*/
 if (roomsAvailable.Find(R => R.networkId == matchList[i].networkId) == null)
 CreateRoomOnUI(matchList[i].networkId);
 }

 /* Check every room on the UI to see if it exists online.*/
 List<Room> roomListCopy = new List<Room>(roomsAvailable);
 foreach (Room roomy in roomListCopy)
 {
 MatchInfoSnapshot matchInfoSnapshot = matchList.Find(N => N.networkId ==
roomy.networkId);
 /* If doesn't exist remove from UI. */
 if (matchInfoSnapshot == null)
 RemoveRoomOnUI(roomy.networkId);
 }

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 12

}

The Lobby Manager

This class will inherit from the NetworkLobbyManager class (UnityEngine.Networking package).
Notice that the NetworkLobbyManager, is a child of the NetworkManager class. In that way, this
script will be have access to the callback methods as the network manager runs. We will
be looking into 5 callbacks at this point.

1. OnMatchList
2. OnMatchCreate
3. OnDestroyMatch
4. OnServerAddPlayer
5. OnCreateGamePlayerfromLobbyPlayer

Initial version of the LobbyManager

/// <summary>

/// Class that hold the Lobby methods for creating and managing rooms.

/// </summary>

public class LobbyManager : NetworkLobbyManager
{

 #region Properties

 /// <summary>
 /// Variable to save memory address reference to this singleton.
 /// </summary>
 public static LobbyManager Instance;

 public MatchInfo CurrentMatch;

 private UIManager uiManagerReference;

 // --

 /// <summary>
 /// Awake method transforms this class into a singleton.
 /// To access this singleton from another class, see the public variable:
 /// <see cref="Instance"/>
 /// </summary>
 void Awake()
 {

 // Performing a Singleton.
 if (LobbyManager.Instance != null)
 {

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 13

 Destroy(this.gameObject);
 Destroy(this);
 return;
 }

 else
 Instance = this;
 }

 // --

 /// <summary>
 /// Callback that is called whenever the matches are listed from the server.
 /// </summary>
 public override void OnMatchList(bool success, string extendedInfo, List<MatchInfoSnapshot>
matchList)

 {

 base.OnMatchList(success, extendedInfo, matchList)
 }

 // --

 /// <summary>
 /// Event that runs when a match is created.
 /// </summary>
 public override void OnMatchCreate(bool success, string extendedInfo, MatchInfo matchInfo)
 {

 base.OnMatchCreate(success, extendedInfo, matchInfo);
 }

 // --

 /// <summary>
 /// Callback that is called whenever a match is destroyed.
 /// </summary>
 public override void OnDestroyMatch(bool success, string extendedInfo)
 {

 base.OnDestroyMatch(success, extendedInfo);

 }

 // --

 public override void OnServerAddPlayer(NetworkConnection conn, short playerControllerId)
 {

 base.OnServerAddPlayer(conn, playerControllerId);
 }

 // --

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 14

 public void OnCreateGamePlayerfromLobbyPlayer(LobbyPlayer lp)
 {

 base.OnCreateGamePlayerfromLobbyPlayer(lp);

 }

}

OnMatchCreate

Now let’s add some extra functionality to those callbacks. For the OnMatchCreate, we would like
to notify the UIManager that a match was successfully created so it can add a reference to it in
the UI.

/// <summary>

/// Event that runs when a match is created.

/// </summary>

/// <param name="success">Indicates if the request succeeded.</param>

/// <param name="extendedInfo">A text description of the failure if success is

false.</param>

/// <param name="matchInfo">Information about the match created.</param>

public override void OnMatchCreate(bool success, string extendedInfo, MatchInfo matchInfo)
{

 base.OnMatchCreate(success, extendedInfo, matchInfo);

 /* If there is no reference to the UI Manager */
 if (uiManagerReference == null)
 uiManagerReference = GameObject.Find("Managers/UI
Manager").GetComponent<UIManager>();

 /* Check if recovered. */
 if (uiManagerReference == null)
 Debug.Log("<color=red>Lobby Manager:</color> Can't find the local area UI. Are you
sure this is being called on the correct scene?");
 else
 uiManagerReference.CreateRoomOnUI(matchInfo.networkId);

 /* Save a reference to the current match.. (server only)*/
 CurrentMatch = matchInfo;
}

OnMatchList

After listing matches we want to update the UI, removing rooms that don’t exist anymore and
adding rooms that were created. This can be done by calling UpdateMatchList on the
UIManager passing as reference the list of MatchInfoSnapshots on the server.

/// <summary>

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 15

/// Callback that is called whenever the matches are listed from the server.

/// </summary>

/// <param name="matchList">Information about the match created.</param>

public override void OnMatchList(bool success, string extendedInfo, List<MatchInfoSnapshot>
matchList)

{

 base.OnMatchList(success, extendedInfo, matchList);
 uiManagerReference.UpdateMatchList(matchList);
}

Setting up the Lobby Manager (Inspector)

Player and LobbyPlayer

Unity’s networking system uses a prefab to represent a player on the lobby (LobbyPlayer), and
a prefab for player in game. It’s needed to set those on the inspector (LobbyManager).

Create a script called ‘Player’, set it as a child of NetworkBehaviour (instead of MonoBehaviour).
At this point this script can be blank. On the Networking Quick Start Part II this will be further
developed, allowing information to be exchanged between game instances.

Finally attach this script to a GameObject, make it a prefab and attached to the ‘Game Player
Prefab’ field on the Lobby Manager script.

Now create a script called ‘LobbyPlayer’, set is as a child of NetworkLobbyPlayer. On the Start
method add the following.

if (isLocalPlayer)
 this.SendReadyToBeginMessage();

This line tells the lobby manager that this player is all set to start playing the match. Once all the
players are ready the game will automatically starts. Create a new game object called ‘Lobby
Player’ attach this script to it, make it a prefab and attach it to the ‘Lobby Player Prefab’ field.

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 16

Play Scene and Lobby Scene

The networking system also uses two scenes, one for the lobby and other for the game. Once
the match is ready to be set it will start the game scene. In that way, set two scenes the current
one as the lobby scene and another empty scene as the game scene.

When testing if everything worked, both players should be redirected to the game scene. And
their Player object should be instantiated. The picture below shows how the lobby manager
should be set (Remember to uncheck Show Lobby GUI).

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 17

Testing
In order to test the network game, it’s necessary to make a build. Once the build is done
execute it and create a match. On the Unity Editor run the game, you should see the match
created on the list. Upon clicking on it and clicking ‘Join’. Both players should be taken to the
game scene.

Conclusion
This document was made to get anyone with minimum Unity experience into making a simple
lobby system. Working with networked games is really different from working with single player
games. An important lesson that I learned during this process is to set as many log messages
as you can.
Each callback can be overwritten to have a debug message added, in that way you can know
exactly how to code is running. Don’t save on log messages! Thanks for reading :-)

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 18

Appendix - The code

UI Manager

The final code UIManager.cs that you should have by the end of this tutorial can be found
below.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.Networking.Match;
using UnityEngine.Networking.Types;
using UnityEngine.UI;

public class UIManager : MonoBehaviour
{

 public static UIManager Instance;

 public GameObject RoomPrefab;

 private ulong roomSelected = (ulong)NetworkID.Invalid;

 private int roomsCreated = 0;

 private List<Room> roomsAvailable;

 /// <summary>
 /// Awake method transforms this class into a singleton.
 /// To access this singleton from another class, see the public variable:
 void Awake()
 {

 // Performing a Singleton.
 if (UIManager.Instance != null)
 {

 Destroy(this.gameObject);
 Destroy(this);
 return;
 }

 else
 {

 Instance = this;
 }

 }

 /// <summary>
 /// A structure to hold information regarding a room.
 /// </summary>

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 19

 private class Room
 {

 public string name;
 public GameObject instance;
 public NetworkID networkId;

 /// <summary>
 /// Constructor for the RoomInformation.
 /// </summary>
 /// <param name="Name"> The name of the room. </param>
 /// <param name="Instance"> The GameObject that represents the room on the list.
</param>

 public Room(string Name, GameObject Instance, NetworkID id)
 {

 name = Name;
 instance = Instance;
 networkId = id;
 }

 }

 // Use this for initialization
 void Start()
 {

 roomsAvailable = new List<Room>();
 // Start the matchmaking
 LobbyManager.Instance.StartMatchMaker();
 StopAllCoroutines();
 StartCoroutine(RefreshLobby());
 }

 // Update is called once per frame
 void Update() { }

 /// <summary>
 /// Fill the list of matches on the UI.
 /// </summary>
 /// <param name="matchList">The list of matches available online.</param>
 public void ListMatches(List<MatchInfoSnapshot> matchList)
 {

 }

 /// <summary>
 /// Creates a room and waits for player.
 /// </summary>
 public void OnClickCreateRoomButton()
 {

 /* Creates the match. */
 LobbyManager.Instance.matchMaker.CreateMatch(
 "New Room",

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 20

 (uint)LobbyManager.Instance.maxPlayers,
 true,
 "", "", "", 0, 0,
 LobbyManager.Instance.OnMatchCreate);

 }

 /// <summary>
 /// When the player click to join the room.
 /// </summary>
 public void OnClickJoinRoomButton()
 {

 if (roomSelected == (ulong)NetworkID.Invalid)
 {

 Debug.Log("<color=orange>UIManager:</color> There seems to be an error the
selected room doesn't exist.");
 return;
 }

 NetworkID selected = roomsAvailable.Find(R => R.networkId ==
(NetworkID)roomSelected).networkId;

 /* Call the method that tries to login */
 Debug.Log("Attempt to join.");
 LobbyManager.Instance.matchMaker.JoinMatch(selected, "", "", "", 0, 0,
LobbyManager.Instance.OnMatchJoined);
 }

 /// <summary>
 /// Creates a room on the user interface.
 /// </summary>
 public void CreateRoomOnUI(NetworkID networkID)
 {

 GameObject parent = GameObject.Find("MatchesPanel/Container");

 /* Creates the room and set it under the container object.*/
 GameObject room = GameObject.Instantiate(RoomPrefab, parent.transform);
 roomsCreated++;
 room.GetComponentInChildren<Text>().text = "Room " + roomsCreated;
 room.GetComponent<Button>().onClick.RemoveAllListeners();
 room.GetComponent<Button>().onClick.AddListener(delegate {
ChangeSelectedRoom(networkID); });

 roomsAvailable.Add(new Room("Room " + roomsCreated, room, networkID));

 }

 /// <summary>
 /// Creates a room on the user interface.
 /// </summary>

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 21

 public void RemoveRoomOnUI(NetworkID networkID)
 {

 Room elementToBeDeleted = roomsAvailable.Find(R => R.networkId == networkID);
 if (elementToBeDeleted != null)
 {

 roomsAvailable.Remove(elementToBeDeleted);
 GameObject.Destroy(elementToBeDeleted.instance.gameObject);
 }

 else
 Debug.LogError("<color=orange>UIManager:</color>Could not find the element to
destroy.");
 }

 public void UpdateMatchList(List<MatchInfoSnapshot> matchList)
 {

 /* Case there is no match. */
 if (matchList.Count == 0)
 {

 int elementIndex = 0;
 while (roomsAvailable.Count != 0)
 {

 RemoveRoomOnUI(roomsAvailable[elementIndex].networkId);
 }

 return;
 }

 /* Check every room online to see if it exist on the UI if not create it.*/
 for (int i = 0; i < matchList.Count; ++i)
 {

 /* If room exist online but not on UI create it.*/
 if (roomsAvailable.Find(R => R.networkId == matchList[i].networkId) == null)
 CreateRoomOnUI(matchList[i].networkId);
 }

 /* Check every room on the UI to see if it exists online.*/
 List<Room> roomListCopy = new List<Room>(roomsAvailable);
 foreach (Room roomy in roomListCopy)
 {

 MatchInfoSnapshot matchInfoSnapshot = matchList.Find(N => N.networkId ==
roomy.networkId);
 /* If doesn't exist remove from UI. */
 if (matchInfoSnapshot == null)
 RemoveRoomOnUI(roomy.networkId);
 }

 }

 /// <summary>
 /// Change the selected room on the UI
 /// </summary>

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 22

 /// <param name="selection"></param>
 public void ChangeSelectedRoom(NetworkID selection)
 {

 this.roomSelected = (ulong)selection;
 }

 /// <summary>
 /// Method that refreshes the lobby interface.
 /// </summary>
 private void RefreshMatchList()
 {

 // Set the callback to do something once the matchmaker have started
 if (LobbyManager.Instance == null)
 {

 Debug.Log("Lobby manager seems to be destroyed..");
 return;
 }

 if (LobbyManager.Instance.matchMaker == null)
 {

 LobbyManager.Instance.StartMatchMaker();
 }

 LobbyManager.Instance.matchMaker.ListMatches(0, 6, "", true, 0, 0,
LobbyManager.Instance.OnMatchList);
 }

 /// <summary>
 /// Coroutine that calls RefreshMatchList every 1 second.
 /// </summary>
 /// <returns></returns>
 private IEnumerator RefreshLobby()
 {

 while (true)
 {

 RefreshMatchList();
 yield return new WaitForSeconds(1f);
 }

 }

}

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 23

Lobby Manager

The final code LobbyManager.cs that you should have by the end of this tutorial can be found
below.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.Networking;
using UnityEngine.Networking.Match;
using UnityEngine.SceneManagement;

/// <summary>

/// Class that hold the Lobby methods for creating and managing rooms.

/// </summary>

public class LobbyManager : NetworkLobbyManager
{

 #region Properties

 /// <summary>
 /// Variable to save memory address reference to this singleton.
 /// </summary>
 public static LobbyManager Instance;

 public MatchInfo CurrentMatch;

 #endregion

 #region Attributes

 private UIManager uiManagerReference;

 #endregion

 #region Methods

 #region Unity Methods

 // --

 /// <summary>
 /// Awake method transforms this class into a singleton.
 /// To access this singleton from another class, see the public variable:
 /// <see cref="Instance"/>
 /// </summary>
 void Awake()
 {

 // Performing a Singleton.
 if (LobbyManager.Instance != null)

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 24

 {

 Destroy(this.gameObject);
 Destroy(this);
 return;
 }

 else
 {

 Instance = this;
 }

 }

 // --

 // Use this for initialization
 void Start()
 {

 if (uiManagerReference == null)
 uiManagerReference = GameObject.Find("Managers/UI
Manager").GetComponent<UIManager>();

 // Start the matchmaking
 LobbyManager.Instance.StartMatchMaker();
 }

 // --

 #endregion

 #region Public Methods

 // --

 /// <summary>
 /// Callback that is called whenever the matches are listed from the server.
 /// </summary>
 /// <param name="success">Indicates if the request succeeded.</param>
 /// <param name="extendedInfo">A text description of the failure if success is
false.</param>

 /// <param name="matchList">Information about the match created.</param>
 public override void OnMatchList(bool success, string extendedInfo,
List<MatchInfoSnapshot> matchList)
 {

 base.OnMatchList(success, extendedInfo, matchList);
 uiManagerReference.UpdateMatchList(matchList);
 }

 // --

 /// <summary>

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 25

 /// Event that runs when a match is created.
 /// </summary>
 /// <param name="success">Indicates if the request succeeded.</param>
 /// <param name="extendedInfo">A text description of the failure if success is
false.</param>

 /// <param name="matchInfo">Information about the match created.</param>
 public override void OnMatchCreate(bool success, string extendedInfo, MatchInfo
matchInfo)

 {

 base.OnMatchCreate(success, extendedInfo, matchInfo);

 /* If there is no reference to the UI Manager */
 if (uiManagerReference == null)
 uiManagerReference = GameObject.Find("Managers/UI
Manager").GetComponent<UIManager>();

 /* Check if recovered. */
 if (uiManagerReference == null)
 Debug.Log("<color=red>Lobby Manager:</color> Can't find the local area UI. Are
you sure this is being called on the correct scene?");
 else
 uiManagerReference.CreateRoomOnUI(matchInfo.networkId);

 /* Save a reference to the current match.. (server only)*/
 CurrentMatch = matchInfo;
 }

 #endregion
 #endregion
}

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 26

Lobby Player

The final code LobbyPlayer.cs that you should have by the end of this tutorial can be found
below.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.Networking;

public class LobbyPlayer : NetworkLobbyPlayer
{

 // Use this for initialization
 void Start ()
 {

 if (isLocalPlayer)
 this.SendReadyToBeginMessage();
 }

}

Player

The final code Player.cs that you should have by the end of this tutorial can be found below.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.Networking;

public class Player : NetworkBehaviour
{

// Use this for initialization

void Start () {}

// Update is called once per frame

void Update () {}
}

Lucas Martins - Networking Quick Start Guide Part I

More at www.souzacodes.com
Page. 27

